Session 10: Graph Learning
Date: Wednesday October 16, 15:15 PM – 16:20 PM (GMT+2)
Room: Petruzzelli Theater
Session Chair: Antonio Ferrara
- RES 🕓15A Unified Graph Transformer for Overcoming Isolations in Multi-modal Recommendation
by Zixuan Yi (University of Glasgow) and Iadh Ounis (University of Glasgow) - RES 🕓15Information-Controllable Graph Contrastive Learning for Recommendation
by Zirui Guo (Beijing University of Posts and Telecommunications), Yanhua Yu (Beijing University of Posts and Telecommunications), Yuling Wang (Hangzhou Dianzi University), Kangkang Lu (Beijing University of Posts and Telecommunications), Zixuan Yang (Beijing University of Posts and Telecommunications), Liang Pang (Chinese Academy of Sciences) and Tat-Seng Chua (National University of Singapore) - RES 🕓15MMGCL: Meta Knowledge-Enhanced Multi-view Graph Contrastive Learning for Recommendations
by Yuezihan Jiang (Kuaishou Technology), Changyu Li (Kuaishou Technology), Gaode Chen (Chinese Academy of Sciences), Peiyi Li (Kuaishou Technology), Qi Zhang (Kuaishou Technology), Jingjian Lin (Kuaishou Technology), Peng Jiang (Kuaishou Inc.), Fei Sun (China) and Wentao Zhang (Peking University) - REPR 🕓10A Novel Evaluation Perspective on GNNs-based Recommender Systems through the Topology of the User-Item Graph
by Daniele Malitesta (Université Paris-Saclay, CentraleSupélec, Inria), Claudio Pomo (Politecnico di Bari), Vito Walter Anelli (Politecnico di Bari), Alberto Carlo Maria Mancino (Politecnico di Bari), Tommaso Di Noia (Politecnico di Bari) and Eugenio Di Sciascio (Politecnico di Bari) - IND 🕓10Country-diverted experiments for mitigation of network effects
by Lina Lin (Google), Changping Meng (Google), Jennifer Brennan (Google), Jean Pouget-Abadie (Google), Ningren Han (Google), Shuchao Bi (Google) and Yajun Peng (Google)