Session 2a: Contextual Challenges

Date: Thursday, Sept 17, 2015, 09:00-10:30
Location: HS 1
Chair: Francesco Ricci

  • Top-N Recommendation for Shared Accounts
    by Koen Verstrepen and Bart Goethals

    Standard collaborative filtering recommender systems assume that every account in the training data represents a single user. However, multiple users often share a single account. A typical example is a single shopping account for the whole family. Traditional recommender systems fail in this situation. If contextual information is available, context aware recommender systems are the state-of-the-art solution. Yet, often no contextual information is available. Therefore, we introduce the challenge of recommending to shared accounts in the absence of contextual information. We propose a solution to this challenge for all cases in which the reference recommender system is an item-based top-N collaborative filtering recommender system, generating recommendations based on binary, positive-only feedback. We experimentally show the advantages of our proposed solution for tackling the problems that arise from the existence of shared accounts on multiple datasets.

  • Exploiting Geo-Spatial Preference for Personalized Expert Recommendation
    by Haokai Lu and James Caverlee

    Experts are important for providing reliable and authoritative information and opinion, as well as for improving online reviews and services. While considerable previous research has focused on finding topical experts with broad appeal – e.g., top Java developers, best lawyers in Texas – we tackle the problem of personalized expert recommendation, to identify experts who have special personal appeal and importance to users. One of the key insights motivating our approach is to leverage the geo-spatial preferences of users and the variation of these preferences across different regions, topics, and social communities. Through a fine-grained GPS-tagged social media trace, we characterize these geo-spatial preferences for personalized experts, and integrate these preferences into a matrix factorization-based personalized expert recommender. Through extensive experiments, we find that the proposed approach can improve the quality of recommendation by 24% in precision compared to several baselines. We also find that users’ geo-spatial preference of expertise and their underlying social communities can ameliorate the cold start problem by more than 20% in precision and recall.

  • Risk-Hedged Venture Capital Investment Recommendation
    by Xiaoxue Zhao, Weinan Zhang and Jun Wang

    With the increasing accessibility of transactional data in venture finance, venture capital (VC) firms face great challenges in developing quantitative tools to identify new investment opportunities. Recommendation techniques have the possibility of helping VCs making data-driven investment decisions by providing an automatic screening process of the large number of startups across different domains on the basis of their past investment data. A previous study has shown the potential advantage of using collaborative filtering to catch and predict the VCs’ investment behaviours. However, two fundamental challenges in venture finance make conventional recommendation techniques difficult to apply. First, risk factors should be cautiously considered when making investments: for a potential startup, a VC needs to specifically estimate how well this new investment can fit into its holding investment portfolio in such a way that investment risk can be hedged. Second, The investment behaviours are much sparser than conventional recommendation applications and a VC’s investments are usually limited to a few industry categories, making it impossible to use a topic-diversification method to hedge the risk. In this paper, we solve the startup recommendation problem from a risk management perspective. We propose 5 risk-aware startup selection and ranking algorithms to catch the VCs’ investment behaviours and predict their new investments. Apart from the contribution on the new risk-aware recommendation model, our experiments on the collected CrunchBase dataset show significant performance improvements over strong baselines.

Back to Program

Diamond Supporter
 
Platinum Supporters
 
 
Gold Supporters
 
 
Silver Supporter
 
Special Supporters