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Greedy Optimized Multileaving

® A method that evaluates multiple rankings efficiently : o _ _ o Using the previous work's
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Re-formulation for personalized settings

-------------------------------------------------

Challenges

® Achieving high sensitivity with low computation cost
for the rankings, which differ for each user and each
time.

Greedy Optimized Multileavning | @ Personalized ranking is shown to

(proposed) the user only once.
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subject to probability as a one-hot vector.

® Ensuring stability over the number of rankers and the
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- - We can solve this problem by greedy strategy.
Contributions

Inverse credit function
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® New Problems: Clarifies the challenges of applying the
multileaving method to personalized rankings;

The deeper the click position,
the smaller the credit.

rank(O ;,Ij)’

[

| ® Algorithm: Proposes the greedy optimized multileaving
(GOM) method with the personalization credit function The credit can be calculated

to solve these problems; ana Suiieii ool eleieieleleieieie e without position noise.
personalized credit function
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® Stability and Sensitivity: Confirms the stability and
sensitivity of GOM throughout offline and online
experiments. ]
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Experiment

TDM: Team Draft Multileaving (Schuth, 2014)
GOM-I: GOM, using the inverse credit
GOM-P: GOM, using the personalization credit

Online Do GOM’ s evaluation coincide with A/B Testing?
Test How is the efficiency?

Table 1: Differences between the sum of credits. The values of GOM-P and TDM were all positive, while some values of 1.0
—— GOM-P
GOM-| (written in blue) were negative. The GOM-P and TDM's results were consistent with previous CTR results of A/B (. DM
A/B
testing (algo-A < algo-B < algo-C < algo-D < algo-E), but GOM-| was inconsistent. This means that the inverse credit 0.8 1

function which was often used in previous studies is nhot appropriate for long ranking.
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P-value versus the number of users

These experiments assumed a practical environment that requires a low computation cost
to generate rankings in real-time; therefore, we did not use OM.

Conclusion and Future Work
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® We will try to apply GOM’ s feedback schema to speed up

Insensitivity versus the number ] :
online learning to rank.

Accuracy versus the number of rankers
of ranker and length




