Greedy Optimized Multileaving for Personalization

Kojiro lizuka¹, Takeshi Yoneda¹, Seki Yoshifumi¹
¹Gunosy Inc.

{kojiro.iizuka, takeshi.yoneda, yoshifumi.seki}@gunosy.com

What is Multileaving?

 A method that evaluates multiple rankings efficiently using user click feedback (Schuth, 2014).

Challenges

- Achieving high sensitivity with low computation cost for the rankings, which differ for each user and each time.
- Ensuring stability over the number of rankers and the ranking length.

Contributions

- New Problems: Clarifies the challenges of applying the multileaving method to personalized rankings;
- Algorithm: Proposes the greedy optimized multileaving (GOM) method with the personalization credit function to solve these problems; and
- Stability and Sensitivity: Confirms the stability and sensitivity of GOM throughout offline and online experiments.

Greedy Optimized Multileaving

Optimized Multileaving (Radlinski 2013)

$$\min_{p_k} \qquad \alpha \sum_{r=1}^l \lambda_r + \sum_{k=1}^m p_k \sigma_k^2$$

subject to

$$(\forall r, j, j') | \sum_{k=1}^{m} p_{k} \sum_{i=1}^{r} \delta(O_{k,i}, I_{j}) - \sum_{k=1}^{m} p_{k} \sum_{i=1}^{r} \delta(O_{k,i}, I_{j'}) | \leq \lambda_{r}$$

$$\sum_{k=1}^{m} p_{k} = 1, \quad 0 \leq p_{k} \leq 1 \quad (k = 1, \dots, m).$$

Using the previous work's formula has high computational cost to generate multileaved rankings.

- δ : Credit function
- σ : Insensitivity
- λ : Maximum difference of the expected credits
- α : Hyperparameter
- Re-formulation for personalized settings

Greedy Optimized Multileavning (proposed) arg min $\alpha \sum_{k=1}^{l} \lambda_k + \sigma_k^2$

 $\underset{k}{\operatorname{arg \, min}} \quad \alpha \sum_{r=1}^{r} \lambda_r + \sigma_k^2$ subject to

,

 Personalized ranking is shown to the user only once.

 We can consider ranking output probability as a one-hot vector.

$$(\forall r, j, j') | \sum_{i=1}^{r} \delta(O_{k,i}, I_j) - \sum_{i=1}^{r} \delta(O_{k,i}, I_{j'}) | \leq \lambda_r.$$

We can solve this problem by greedy strategy.

Inverse credit function

$$\delta(O_{k,i},I_j) = \frac{1}{rank(O_{k,i},I_i)},$$

The deeper the click position, the smaller the credit.

The credit can be calculated without position noise.

personalized credit function

$$\delta(O_{k,i},I_j) = -|\{j'|rank(O_{k,i},I_{j'}) \leq rank(O_{k,i},I_j)\}|,$$

Experiment

Online Test

Do GOM's evaluation coincide with A/B Testing? How is the efficiency?

Table 1: Differences between the sum of credits. The values of GOM-P and TDM were all positive, while some values of GOM-I (written in blue) were negative. The GOM-P and TDM's results were consistent with previous CTR results of A/B testing (algo-A < algo-B < algo-C < algo-D < algo-E), but GOM-I was inconsistent. This means that the inverse credit function which was often used in previous studies is not appropriate for long ranking.

	GOM-I				GOM-P				TDM			
	algo-A	algo-B	algo-C	algo-D	algo-A	algo-B	algo-C	algo-D	algo-A	algo-B	algo-C	algo-D
algo-B	-14,962				21,111				615			
algo-C	-21,642	-6,680			36,561	15,450			1,259	644		
algo-D	-24,179	-9,217	-2,537		44,484	23,373	7,923		1,812	1,197	553	
algo-E	-5,246	9,716	16,396	18,933	52,597	31,486	16,036	8,113	2,117	1,502	858	305

- TDM: Team Draft Multileaving (Schuth, 2014)
- GOM-I: GOM, using the inverse credit
- GOM-P: GOM, using the personalization credit

P-value versus the number of users

Offline Test

How stable and sensitive is GOM?

Accuracy versus the number of rankers

Insensitivity versus the number of ranker and length

These experiments assumed a practical environment that requires a low computation cost to generate rankings in real-time; therefore, we did not use OM.

Conclusion and Future Work

- We proposed GOM for personalized rankings that require a high degree of freshness, many hyperparameters, and a long ranking length for a rich user experience.
- We confirmed GOM's stability and sensitivity by online and offline experiments.
- We will try to apply GOM's feedback schema to speed up online learning to rank.