From Preference into Decision Making

Modeling User Interactions in Recommender Systems

Qian Zhao (Bloomberg, work done during Ph.D. at GroupLens)
Martijn C. Willemsen (Eindhoven University of Technology)
Gediminas Adomavicius (Carlson School of Management, University of Minnesota)
F. Maxwell Harper (Amazon)
Joseph A. Konstan (GroupLens, University of Minnesota)
Recommender Systems

- Most prior research focuses on
 - Learning from user action feedback (e.g., ratings or clicks etc.)

- This work is about
 - Learning from all user browsing (both user action and inaction) activities
Classical Approach: From Explicit/Implicit Feedback to Preference
Explicit/Implicit Feedback and Preference

What about other (inaction) items?

Key Missing Factor
- Within page comparison
- Decision of action vs. inaction

Image Description

- **Add into a wishlist**
- **Not interested**
- **Click to see details**
- **Rating**

Image Credit: Zhao et al. RecSys’18
Explicit/Implicit Feedback and Preference

What if this is the 3rd time the user sees this page?

Key Missing Factor
- Temporal dependency to prior browsing

Zhao et al. CSCW’17
Example Impact on User Experience
MovieLens

MovieLens recommends these movies

top picks

The Avengers
2012 PG-13 143 min

Skyfall
2012 PG-13 143 min

Big Hero 6
2014 102 min

Die Hard
1988 R 131 min

Zhao et al. CSCW’17
Again and Again

MovieLens recommends these movies

top picks

- The Avengers
 - 2012
 - PG-13
 - 143 min

- Skyfall
 - 2012
 - PG-13
 - 143 min

- Big Hero 6
 - 2014
 - 102 min

- Die Hard
 - 1988
 - R
 - 131 min

Zhao et al. CSCW’17
Youtube
Interested in two of them

Zhao et al. RecSys’18
Watch one of the two

Zhao et al. RecSys’18
Back to home page…?
Problem

- How to model all user browsing activities jointly?
 - Temporal browsing (viewing recommendation lists and/or searching/filtering) page by page
 - Action (performing actions on recommended items, e.g., clicking, consuming) on a page
 - Inaction (neglecting or skipping recommended items) on a page
Decision Field Theory

Figure 1: The connectionist network representation of DFT.

Busemeyer et al. Psychological Review 1993
Decision Field Theory

Preference is actually the end result of micro-level decision making processes.

Figure 7.1 The decision process for a choice among three actions
The Page-Level RNN Model

- Learn embeddings instead of using attributes
- Weights are estimated from data
- Page view sequence as the deliberation process
- There are actually 24 items because of the page size in MovieLens.
- Contrast layer is a ReLU layer
- Preference accumulation corresponds to a RNN layer
The Page-Level RNN Model

We used $n=24$ because of the page size in MovieLens.
The Page-Level RNN Model
Dataset: MovieLens System Logs

- Jan. 12, 2017 to Jan. 14, 2018
- 60K movies
- 22K users
- 45M movie displays and 1.16M (positive) actions
- Temporal splitting
 - Training: Jan. 12, 2017 to Oct. 31, 2017
 - Testing: Nov. 1, 2017 to Jan. 14, 2018
Classical **User & Preference Models**

- **SVD** (Koren et al. 2009):

- **SVD++** (Koren et al. 2010):

- **RNN** (Wu et al. 2017):
Results

<table>
<thead>
<tr>
<th>User Model</th>
<th>MAP@8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVD</td>
<td>0.097</td>
</tr>
<tr>
<td>SVD++</td>
<td>0.106</td>
</tr>
<tr>
<td>RNN</td>
<td>0.119</td>
</tr>
<tr>
<td>PL-RNN</td>
<td>0.141</td>
</tr>
</tbody>
</table>

Modeling user actions as a sequence through RNN seems to learn a better user representation compared with SVD or SVD++

Page-level RNN gains substantially better accuracy than RNN.
Classical User & *Preference* Models

- **Independent binary** (logistic; Hu et al. 2008):
 \[p(r|u, v) = g^r (1 - g)^{1-r} \]

- **Competitive** (softmax; Yang et al. 2011, CCF):
 \[\hat{p}(a|u, v) = \hat{p}_a(a_i = 1|u, v) = \frac{\exp(f(s, o_i))}{\sum_{k=1}^{\alpha+1} \exp(f(s, o_k))} \]

- **Relative** (pairwise ranking; Rendle et al. 2009):
 \[p(r_a > r_b|u, v_a, v_b) = g(f(s, o(v_a) - o(v_b))) \]
“Negative” Items

● Negative sampling (Hu et al. 2009)

● Displayed but inaction (Yang et al. 2011; Zhao et al. 2018)
Results (MAP@8)

<table>
<thead>
<tr>
<th>User Model</th>
<th>Preference Model</th>
<th>Displayed but Inaction “Negative”</th>
<th>Sampled “Negative”</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVD</td>
<td>logistic</td>
<td>0.0006</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>softmax</td>
<td>0.0006</td>
<td>0.097</td>
</tr>
<tr>
<td></td>
<td>pairwise ranking</td>
<td>0.114</td>
<td>0.106</td>
</tr>
</tbody>
</table>

Softmax and logistic preference models are sensitive to the choice of negative items.

Pairwise preference models can learn equally well on both types of negative items.
Messages

- Jointly modeling the three aspects (temporal browsing, action and inaction) of user-system interaction in recommender systems has benefits in
 - (this work) offline recommendation accuracy
 - (maybe, future work) online user experience

- Go from simplified preference assumptions into modeling the complex micro-level user decision making processes.
Thanks! Questions?

- **Title:** “From Preference into Decision Making: Modeling User Interactions in Recommender Systems”
- **Authors:** Qian Zhao, Martijn C. Willemsen, Gediminas Adomavicius, F. Maxwell Harper, and Joseph A. Konstan.
- **Contact:** qzhao2018@gmail.com
Hybrid Based on *Retrieving & Ranking*

- **Retrieving Model**
 - Trained with:
 - Action items as positive
 - Randomly sampled as negative

- **Ranking Model**
 - Trained with:
 - Action items as positive
 - Displayed but inaction as negative
Results

<table>
<thead>
<tr>
<th>User Model</th>
<th>Preference Model</th>
<th>“Negative” Items</th>
<th>MAP@8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVD</td>
<td>softmax</td>
<td>sampled</td>
<td>0.097</td>
</tr>
<tr>
<td>SVD++</td>
<td>softmax</td>
<td>sampled</td>
<td>0.106</td>
</tr>
<tr>
<td>RNN</td>
<td>softmax & pairwise</td>
<td>sampled & displayed but inaction</td>
<td>0.119</td>
</tr>
<tr>
<td>RNN & SVD</td>
<td>softmax & pairwise</td>
<td>sampled & displayed but inaction</td>
<td>0.140</td>
</tr>
<tr>
<td>PL-RNN</td>
<td>softmax</td>
<td>sampled & displayed but inaction</td>
<td>0.141</td>
</tr>
</tbody>
</table>