A Comparison of Calibrated and Intent-Aware Recommendations

Mesut Kaya
TU Delft, Netherlands

Derek Bridge,
University College Cork, Ireland
Calibrated Recommendations

• The top-n recommendations from a model trained for accuracy may
 – focus on the user’s main interests
 – leaving lesser interests under-represented or absent

• Calibrated recommendations [Steck 2018]
 – the goal is to reflect the various interests of the user in the appropriate proportions
Calibrated Recommendations

• Candidate items, ordered for relevance $s(u, i)$ by a baseline recommender

• Greedily re-rank by a linear combination

$$f_{obj}(i, RL) = (1 - \lambda)s(u, i) + \lambda \text{cal}(i, RL) \quad 0 \leq \lambda \leq 1$$
Intent-Aware Diversification

• Early work on diversification
 – greedily re-rank to decrease similarity of items in top-n [Carbonell & Goldstein 1998, Ziegler et al 2005]

• Intent-aware diversification from IR [Santos et al. 2010]
 – top-n contains results for each interpretation of an ambiguous query

• Intent-aware diversification for recommenders [Vargas 2015]
 \[f_{obj}(i, RL) = (1 - \lambda)s(u, i) + \lambda \text{div}_I(i, RL) \]
 – top-n contains results for each of the user’s interests (from her profile)
 – this is like calibration but formulated in a different way that takes relevance into account as well
User Interests

• In [Steck 2018] and [Vargas 2015]
 – user interests are defined by item features, e.g. genres, in the user’s profile

• But item features
 – are not available in every domain
 – are often noisy and inconsistently applied
 – may not describe subjective tastes

[Image from Last.FM]
User Interests

• In our work, we define user interests as *subprofiles*

• Members of a subprofile
 – have similar interactions/ratings
 – no use of item features

![User profile](image)
Summary So Far

<table>
<thead>
<tr>
<th></th>
<th>User interests from item features</th>
<th>User interests from subprofiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Recommenders</td>
<td>CR_F [Steck 2018]</td>
<td>CR_S</td>
</tr>
<tr>
<td>Intent-Aware Recommenders</td>
<td>xQuAD [Vargas 2015]</td>
<td>SPAD</td>
</tr>
</tbody>
</table>
Calibration

Implicit ratings version of MovieLens 20 Million Dataset
Precision versus Diversity

Implicit ratings version of MovieLens 20 Million Dataset
Precision versus Diversity

Implicit ratings version of TasteProfile Dataset
Concluding Remarks

• On these datasets, the approaches that use subprofiles (CR_S and SPAD) achieve
 – the highest precision
 – better than baseline calibration according to both calibration metrics
 – good diversity according to α-nDCG (see paper)

• SPAD also achieves
 – better than baseline diversity according to both ILD metrics
 – suffers least from the relevance/diversity trade-off

• Future directions
 – investigate how users perceive calibrated/diversified recommendations
 – apply subprofiles to tasks other than calibration/ diversification
 – develop the idea that calibration in general (and these approaches in particular) could be used for fairness in recommendations
Thanks

(I’m hiring)