Welcome

It is our great pleasure to welcome you to the 10th ACM Conference on Recommender Systems (RecSys 2016), held in Boston, MA, USA, from September 15th through 19th. Since it was first held ten years ago, RecSys has grown to become the leading conference for the presentation and discussion of recommender systems research, bringing together the world’s leading recommender systems researchers and e-commerce companies.

The scope of RecSys 2016 reflects the growth of the Recommender Systems community. For the second time in the history of RecSys we will offer two parallel tracks during the three days of the main conference with a record breaking 112 contributions including 51 technical papers, 9 Past, Present, and Future papers, 15 industry papers, four tutorials, three keynotes, and 30 demos and posters. We again offer an extensive pre-conference program with nine workshops, the RecSys Challenge and a doctoral symposium.

The technical program for RecSys 2016 drew upon a record 294 total submissions. To celebrate the tenth year of the conference, the program features a new track reflecting on past, present, and future research in the field of recommender systems. Papers in this track consider a broad perspective on how the field has evolved and the challenges and directions that lie ahead. The review process for all tracks was highly selective. In the main program, 29 long papers were accepted out of 159 submissions (18.2% acceptance rate), 22 out of 110 short papers (20% acceptance rate), and 9 out of 25 Past, Present, and Future paper submissions (36% acceptance rate). Prominent topics covered by these papers include human factors, social aspects, context awareness, cold start, novelty and diversity, and core algorithmic research (including matrix factorization, deep learning, and probabilistic approaches).

Building on the tradition established by previous years, RecSys 2016 features a strong focus on significant real-world challenges facing industrial practitioners and practical solutions to those challenges. The three industry sessions feature a rich set of talks from Mendeley, Meetup, Bloomberg, Foursquare, Spotify, Netflix, Pandora, Stitch Fix, Expedia, Nara Logics, GraphSQL, Retail Rocket, Quora, Google and Pinterest. A wide range of domains are represented in these sessions including publishing, news, Q & A, events, music, movies, television, fashion, apps and games.

This year’s conference has truly been a product of the vibrant, supportive RecSys community and the vast cohort of amazing volunteers we drew upon within it. We would like to thank the members of the organizing committee for their generosity, initiative and brilliant execution. We are tremendously grateful to the 36 senior and 92 regular Program Committee members and the reviewers who volunteered their time and generated almost 850 detailed and insightful reviews and discussions. We also extend our deepest gratitude to the many sponsors in 2016 who generously provided crucial funds and services allowing us to support many of the social events at the conference. We thank the organizers and sponsors of the RecSys Challenge, who devoted themselves to organizing this annual competitive event.
Finally, we thank all the authors for their contributions in shaping the high quality content of the conference, as well as the conference attendees, who literally give meaning to this event.

We hope you will find RecSys 2016 to be an engaging opportunity to share ideas and interact with leading researchers and practitioners from around the world.

Shilad Sen & Werner Geyer
RecSys 2016 General Chairs

Jill Freyne & Pablo Castells
RecSys 2016 Program Chairs

Karen Church, Paul Lamere & Hrishi Aradhye
RecSys 2016 Industry Chairs
Venue

RecSys 2016 will be hosted in the Boston area with locations in Cambridge and Boston. Our featured hotel, the Hyatt Regency Cambridge, is located in short walking distance from the main conference venue at MIT. All conference venues are in close proximity, easily accessible by foot, public transportation, and shuttles provided by the conference.

The pre-conference workshops will take place at IBM Research, located at the IBM Innovation Center, on Thursday and Friday, September 15 - 16.

The main conference will take place at the Massachusetts Institute of Technology (MIT) from Saturday through Monday, September 17 - 19.

Our Poster Reception will take place at Walker Memorial on Saturday, September 17, and the Conference Banquet will be held at the Museum of Science on Sunday, September 18.

The map below provides an overview of the various conference locations:
How to get there

The pre-conference workshops will take place on September 15 and 16 at the IBM Innovation Center, located at 1 Rogers Street, Cambridge, MA 02142.

Round-trip shuttles will run between the Hyatt Regency Cambridge and IBM between 7:45 - 9:25 each morning and 17:00 - 20:30 each evening on workshop days. You can also walk from the hotel and back along the Charles River, using the route in the map below, or use public transportation. Both the Massachusetts Bay Transportation Authority (MBTA) and the EZRide shuttle offer routes connecting conference locations. Fares and schedules can be found at the MBTA and EZRide websites.

Enter IBM through the main entrance off Rogers Street. You can also enter through the side entrance just off First Street.
How to get there

The main conference will be held on September 17–19 at MIT. Sessions will take place in two buildings at MIT: Kresge Auditorium and the Stratton Student Center.

Saturday and Sunday’s parallel sessions take place in Kresge Auditorium and Sala de Puerto Rico (W20-202) on the 2nd floor in the Stratton Student Center.

Monday’s parallel sessions will take place in Kresge Auditorium and Mezzanine Lounge (W20-307) on the 3rd floor in Stratton Student Center.

Getting from Hyatt Regency Cambridge to the MIT Kresge Auditorium and Stratton Student Center:

Stratton Student Center is a short walk from Kresge Auditorium.
Walker Memorial

During the main conference (Sat, Sun, Mon) complimentary lunch will be available within walking distance, at Walker Memorial (Morss Hall). Walker Memorial is also the location of the poster reception on Saturday, September 17.

Getting to Walker Memorial:

Walker Memorial (142 Memorial Drive, Cambridge, MA 02139) is located on the MIT campus and can easily be reached via a short walk from Kresge Auditorium.
Schedule - Thu @ IBM

Thursday, September 15

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 17:30</td>
<td>Registration - Lobby</td>
<td></td>
</tr>
<tr>
<td>07:45 - 09:25</td>
<td></td>
<td>Buses cycle between Hyatt Regency Cambridge and IBM</td>
</tr>
<tr>
<td>09:00 - 10:30</td>
<td>RecSysTV Aud A, DLRS Aud B, Tourism 2224, Health 2207, Challenge 2217</td>
<td></td>
</tr>
<tr>
<td>10:30 - 11:00</td>
<td></td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11:00 - 12:30</td>
<td>RecSysTV Aud A, DLRS Aud B, Tourism 2224, Health 2207, Challenge 2217</td>
<td></td>
</tr>
<tr>
<td>12:30 - 14:00</td>
<td></td>
<td>Lunch Break</td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>RecSysTV Aud A, RecProfile Aud B, Tourism 2224, Health 2207, Challenge 2217</td>
<td></td>
</tr>
<tr>
<td>15:30 - 16:00</td>
<td></td>
<td>Coffee Break</td>
</tr>
<tr>
<td>16:00 - 17:30</td>
<td>RecSysTV Aud A, RecProfile Aud B, Tourism 2224, Health 2207, Challenge 2217</td>
<td></td>
</tr>
<tr>
<td>17:00 - 20:30</td>
<td></td>
<td>Buses cycle between IBM and Hyatt Regency Cambridge</td>
</tr>
</tbody>
</table>
Schedule - Fri @ IBM

Friday, September 16

<table>
<thead>
<tr>
<th>Time</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 17:30</td>
<td>Registration Lobby</td>
</tr>
<tr>
<td>07:45 - 09:25</td>
<td>Buses cycle between Hyatt Regency Cambridge and IBM</td>
</tr>
<tr>
<td>09:00 - 10:30</td>
<td>INTRS, LSRS, CBRecSys, Empire, Doc Symp</td>
</tr>
<tr>
<td></td>
<td>Aud A, Aud B, 2224, 2217, 2211</td>
</tr>
<tr>
<td>10:30 - 11:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11:00 - 12:30</td>
<td>INTRS, LSRS, CBRecSys, Empire, Doc Symp</td>
</tr>
<tr>
<td></td>
<td>Aud A, Aud B, 2224, 2217, 2211</td>
</tr>
<tr>
<td>12:30 - 14:00</td>
<td>Lunch Break</td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>INTRS, LSRS, CBRecSys, Empire, Doc Symp</td>
</tr>
<tr>
<td></td>
<td>Aud A, Aud B, 2224, 2217, 2211</td>
</tr>
<tr>
<td>15:30 - 16:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>16:00 - 17:30</td>
<td>INTRS, LSRS, CBRecSys, Empire, Doc Symp</td>
</tr>
<tr>
<td></td>
<td>Aud A, Aud B, 2224, 2217, 2211</td>
</tr>
<tr>
<td>17:00 - 20:30</td>
<td>Buses cycle between IBM and Hyatt Regency Cambridge</td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>07:30 - 18:00</td>
<td>Registration - Kresge Lobby</td>
</tr>
</tbody>
</table>
| 08:30 - 09:00| Opening Remarks
Kresge Auditorium |
| 09:00 - 10:00| Keynote by Claudia Perlich, Dstillery
Kresge Auditorium
Supported by Alibaba |
| 10:00 - 10:40| Coffee Break
Supported by Alibaba |
| 10:40 - 12:20| Paper Session 1
Beyond Accuracy
Kresge Auditorium
Industry Session 1
Stratton Student Center (Sala 202) |
| 12:20 - 14:00| Lunch @ Walker Memorial
Supported by Netflix |
| 14:00 - 15:40| Paper Session 2
Algorithms I
Kresge Auditorium
Tutorial
People Recommendation
Stratton Student Center (Sala 202) |
| 15:40 - 16:20| Coffee Break
Supported by Alibaba |
| 16:20 - 18:00| Paper Session 3
Cold Start and Hybrid Methods
Kresge Auditorium
Paper Session 4
User in the Loop
Stratton Student Center (Sala 202) |
| 17:30 - 18:30| Poster Setup |
| 18:30 - 22:00| Poster Reception - Walker Memorial
Supported by Spotify |
Schedule - Sun @ MIT

<table>
<thead>
<tr>
<th>Time</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:30 - 18:00</td>
<td>Registration - Kresge Lobby</td>
</tr>
<tr>
<td>08:30 - 09:30</td>
<td>Keynote by Shashi Thakur, Google</td>
</tr>
<tr>
<td></td>
<td>Kresge Auditorium</td>
</tr>
<tr>
<td>09:40 - 10:40</td>
<td>Paper Session 5 Trust and Reliability</td>
</tr>
<tr>
<td></td>
<td>Kresge Auditorium</td>
</tr>
<tr>
<td>09:40 - 10:40</td>
<td>Paper Session 6 Applications</td>
</tr>
<tr>
<td></td>
<td>Stratton Student Center (Sala 202)</td>
</tr>
<tr>
<td>10:40 - 11:20</td>
<td>Coffee Break Supported by OpenTable</td>
</tr>
<tr>
<td>11:20 - 12:20</td>
<td>Paper Session 7 Past, Present & Future</td>
</tr>
<tr>
<td></td>
<td>Kresge Auditorium</td>
</tr>
<tr>
<td>11:20 - 12:20</td>
<td>Paper Session 8 Deep Learning</td>
</tr>
<tr>
<td></td>
<td>Stratton Student Center (Sala 202)</td>
</tr>
<tr>
<td>12:20 - 14:00</td>
<td>Lunch @ Walker Memorial Supported by Quora</td>
</tr>
<tr>
<td>14:00 - 15:40</td>
<td>Paper Session 9 Contextual Challenges</td>
</tr>
<tr>
<td></td>
<td>Kresge Auditorium</td>
</tr>
<tr>
<td>14:00 - 15:40</td>
<td>Industry Session 2</td>
</tr>
<tr>
<td></td>
<td>Stratton Student Center (Sala 202)</td>
</tr>
<tr>
<td>15:40 - 16:20</td>
<td>Coffee Break Supported by OpenTable</td>
</tr>
<tr>
<td>16:20 - 18:00</td>
<td>Paper Session 10 Social Perspective</td>
</tr>
<tr>
<td></td>
<td>Kresge Auditorium</td>
</tr>
<tr>
<td>16:20 - 18:00</td>
<td>Tutorial Building Real-Life RS</td>
</tr>
<tr>
<td></td>
<td>Stratton Student Center (Sala 202)</td>
</tr>
</tbody>
</table>

18:30 Buses depart Hyatt and Kresge Auditorium (buses run continuously until 23:00)

19:00 - 22:45 Conference Banquet - Museum of Science Supported by Google (last bus leaves at 23:00).
<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:30 - 13:00</td>
<td>Registration - Kresge Lobby</td>
</tr>
<tr>
<td>08:30 - 10:10</td>
<td>Industry Session 3
Kresge Auditorium</td>
</tr>
<tr>
<td></td>
<td>Tutorial
Matrix & Tensor Decomp.
Stratton Student Center
(Mezzanine Lounge 307)</td>
</tr>
<tr>
<td>10:10 - 10:40</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>10:40 - 12:20</td>
<td>Paper Session 11
Algorithms II
Kresge Auditorium</td>
</tr>
<tr>
<td></td>
<td>Tutorial
Group RS
Stratton Student Center
(Mezzanine Lounge 307)</td>
</tr>
<tr>
<td>12:20 - 14:00</td>
<td>Lunch @ Walker Memorial
RecSys 10-year Birthday Cake
Supported by Pandora</td>
</tr>
<tr>
<td>14:00 - 15:00</td>
<td>RecSys History Trivia - Walker Memorial</td>
</tr>
<tr>
<td>15:00 - 16:00</td>
<td>Keynote by Sinan Aral, MIT
Kresge Auditorium</td>
</tr>
<tr>
<td>16:00 - 16:45</td>
<td>Closing Remarks - Kresge Auditorium</td>
</tr>
</tbody>
</table>
RecSysTV: Recommendation Systems for Television and Online Video

Jan Neumann
Comcast Labs, USA

Claudio Riefolo
ContentWise, Italy

John Hannon
Zalando, Ireland

Hassan Sayyadi
Comcast Labs, USA

For many households the television is still the central entertainment hub in their home, and the average TV viewer spends about half of their leisure time in front of a TV (3-5 hours/day). The choice of what to watch becomes more overwhelming though because the entertainment options are scattered across various channels, such as on-demand video, digital recorders and the traditional linear TV. Recommendation systems provide TV users with suggestions about both online video-on-demand and broadcast content and help them to search and browse intelligently for content that is relevant to them.

While many open questions in video-on-demand recommendations have already been solved, recommendation systems for broadcast content (e.g., linear channels and catch-up TV) still experience a number of unique challenges due to the peculiarity of such domain. The RecSysTV 2016 workshop aims to provide a dedicated venue for papers covering all aspects of this recommendation problem.
DLRS: Workshop on Deep Learning for Recommender Systems

Alexandros Karatzoglou
Telefonica Research, Spain

Balázs Hidasi
Gravity R&D, Hungary

Domonkos Tikk
Gravity R&D, Hungary

Oren Sar-Shalom
IBM Research, Israel

Haggai Roitman
IBM Research, Isreal

Lior Rokach
Ben-Gurion University, Israel

Bracha Shapira
Ben-Gurion University, Isreal

We believe that deep learning is one of the next big things in recommendation systems technology. The past few years have seen the tremendous success of deep neural networks in a number of complex tasks such as computer vision, natural language processing and speech recognition. Despite this, only little work has been published on deep learning methods for the recommender systems. Notable exceptions are deep learning methods for music recommendation, and session-based recommendation.

The aim of the workshop is to encourage the application of deep learning techniques in recommender systems, to promote research in novel deep learning methods specific to recommender systems, and to bring together researchers from the recommender systems and deep learning communities.
RecProfile: Workshop on Profiling User Preferences for Dynamic Online and Real-Time Recommendations

Rani Nelken
Outbrain, USA

This workshop focuses on practical challenges of large scale recommendation systems. While traditional profiling is well understood, modern dynamic online recommendation services raise interesting challenges for user profiling. First, effectively representing user preferences in dynamic settings requires novel modeling techniques such as latent factorization. Second, for space and time efficiency, it might be infeasible to store all observed user profile signals, which requires resorting to streaming or sketching algorithms. Third, there are significant engineering architecture challenges to efficiently maintain user profiles for large-scale real-time recommendations. We welcome papers addressing both algorithmic and architectural facets of the problem.

RecTour: Workshop on Recommenders in Tourism

Daniel Fesenmaier
University of Florida, USA

Tsvi Kuflik
The University of Haifa, Israel

Julia Neidhardt
TU Wien, Austria

This one-day workshop addresses specific challenges for recommender systems in the tourism domain. Planning a vacation usually involves searching for a set of products that are interconnected (e.g., transportation, lodging, attractions) with limited availability, and where contextual aspects may have a major impact (e.g., spatiotemporal context). RecTour 2016 aims at attracting presentations of novel ideas in order to advance the current state of the art in the field of tourism recommenders; topics include specific applications and case studies (evaluation), specific methods and techniques, context and mobility, the cold-start problem, preference elicitation, and emotions and recommenders. Researchers and practitioners from different fields are invited to submit research and position papers as well as demonstration systems.
Thu - Workshops

09:00 - 17:30, IBM (2207)

HealthRecSys: Workshop on Engendering Health with Recommender Systems

David Elsweiler
University of Regensburg, Germany

Bernd Ludwig
University of Regensburg, Germany

Alan Said
University of Skövde, Sweden

Hanna Schäfer
TU München, Germany

Christoph Trattner
Know-Center, Austria

One of the dearest values people have in their lives is their health. To empower people to successfully adopt a healthy lifestyle we want to utilize recommender systems by offering specific, tailored suggestions for behavioural changes such as nutrition, physical activity, sleep and many more. This one-day workshop aims at bringing together a broad range of contributions (short (position) papers) related to health and at building a shared knowledge base, infrastructure, and roadmap for future research. Topics may cover any related research including fields such as Motivation, Mobile Persuasion, Sensors, Gamification, Social Computing, Ethics, User Modelling and Cross-Domain Knowledge Transfer.
The RecSys Challenge 2016 is organized by XING, CrowdRec and MTA SZTAKI. XING is a social network for business. People use XING, for example, to find a job and recruiters use XING to find the right candidate for a job. At the moment, XING has more than 15 Million users and around 1 Million job postings on the platform. Given a user, the goal of the job recommendation system is to predict those job postings that are likely to be relevant to the user. In order to fulfill this task, various data sources can be exploited. Job recommendations are displayed on xing.com as well as in XING’s mobile apps.

In this year’s edition of the RecSys Challenge, the task is: given a XING user, predict those job postings that a user will click on. Submitted solutions will be evaluated offline and online. A detailed description of the challenge can be found on the website of the RecSys Challenge 2016. Accepted contributions will be presented during this workshop.

Fabian Abel
XING AG, Germany

Martha Larson
TU Delft, Netherlands

András Benczúr
Hungarian Academy of Sciences, Hungary

Daniel Kohlsdorf
XING AG, Germany

Róbert Pálovics
Hungarian Academy of Sciences, Hungary
IntRS: Joint Workshop on Interfaces and Human Decision Making for Recommender Systems

Peter Brusilovsky
University of Pittsburgh, USA

Pasquale Lops
University of Bari, Italy

Marco de Gemmis
University Aldo Moro Bari, Italy

Giovanni Semeraro
University of Bari, Italy

Alexander Felfernig
Graz University of Technology, Austria

John O’Donovan
University of California, USA

Nava Tintarev
University Of Aberdeen, UK

Martijn C. Willemsen
Eindhoven University of Technology, The Netherlands

As an interactive intelligent system, recommender systems are developed to suggest items that match users’ preferences. Since the emergence of recommender systems, a large majority of research has focused on objective accuracy criteria and less attention has been paid to how users interact with the system and the efficacy of interface designs from users’ perspectives. The field has reached a point where it is ready to look beyond algorithms, into users’ interactions, decision making processes, and overall experience.
The CBRecSys 2016 workshop aims to provide a dedicated venue for papers dedicated to all aspects of content-based recommendations. This includes recommendations in domains where textual content is abundant (e.g., books, news, scientific articles, jobs, educational resources, and web pages) as well as dedicated comparisons of content-based techniques with collaborative filtering in different domains. Other relevant topics related to content-based recommendations could include opinion mining for text/book recommendations, semantic recommendations, content-based recommendations to alleviate cold-start problems, deep learning for content representation, as well as serendipity, diversity and cross-domain recommendations.
Fri - Workshops

09:00 - 17:30, IBM (2217)

EMPIRE: Workshop on Emotions and Personality in Personalized Systems

Marko Tkalčič
Free University of Bolzano, Italy

Marco de Gemmis
University of Bari, Italy

Berardina De Carolis
University of Bari, Italy

Andrej Košir
University of Ljubljana, Slovenia

The RecSys research community has done a tremendous job in the last decade on exploiting various data sources to improve recommendations through sophisticated algorithms. The workshop complements these core RecSys activities by pushing the agenda of taking into account user-centric aspects, such as emotions and personality, into the RecSys framework. In fact, personality and emotions shape our daily lives by having a strong influence on our preferences, decisions and behaviour in general. In recent years, emotions and personality have shown to play an important role in various aspects of recommender systems, such as implicit feedback, contextual information, affective content labeling, cold-start problems, diversity, cross-domain recommendations, and group recommendations. With the development of robust techniques for the unobtrusive acquisition of emotions (e.g. from various modalities, such as video or physiological sensors) and personality (e.g. from social media) the time is right to take advantage of these possibilities to collect massive datasets and improve recommender systems.
LSRS: Workshop on Large Scale Recommendation Systems

Tao Ye
Pandora, USA

Denis Parra
PUC Chile, Chile

Danny Bickson
Dato, USA

Modern Recommender Systems face greatly increased data volume and complexities. Previous computational models and experience on small data may not hold today, thus, how to build an efficient and robust system has become an important issue for many practitioners. Meanwhile, there is an increasing gap between academia research of recommendation systems focusing on complex models, and industry practice focusing on solving problems at large scale using relatively simple techniques. Evaluation of models have diverged as well. While most publications focus on fixed datasets and offline ranking measures, industry practitioners tend to use long term engagement metrics to make final judgments.

The motivation of this workshop is to bring together researchers and practitioners working on large-scale recommender systems in order to: (1) share experience, techniques and methodologies used to develop effective large-scale recommenders, from architecture, algorithms, programming models, to evaluation (2) challenge conventional wisdom (3) identify key challenges and promising trends in the area, and (4) identify collaboration opportunities among participants.
Automated Machine Learning in the Wild

Machine Learning research is progressing at an ever increasing pace. Fueled by technology advances commonly referred to as “Big Data”, all data related fields are teeming with scientific and applied activity: our communities explore new application areas, develop new learning algorithms, and continuously scale and improve optimization and estimation methods. But from an industry perspective, many of the most impeding challenges are entirely elsewhere. This talk takes a fresh look at the practical state of affairs in the context of running a large scale automated machine learning system that supports 50 billion decisions daily on behalf of hundreds of digital advertisers. Some of the key lessons are 1) robustness beats peak performance almost always, 2) support for the constant dynamic fluctuations in the data stream is essential, 3) models exploiting unknowingly any weakness of your metrics, and finally 4) the fact that despite big data, the data you really want never exists.

ABOUT THE SPEAKER
Claudia Perlich leads the machine learning efforts that power Dstillery’s digital intelligence for marketers and media companies. With more than 50 published scientific articles, she is a widely acclaimed expert on big data and machine learning applications, and an active speaker at data science and marketing conferences around the world.

Claudia is the past winner of the Advertising Research Foundation’s (ARFGrand Innovation Award and has been selected for Crain’s New York’s 40 Under 40 list, Wired Magazine’s Smart List, and Fast Company’s 100 Most Creative People. Claudia holds multiple patents in machine learning. She has won mandata mining competitions and awards at Knowledge Discovery and Data Mining (KDD) conferences, and served as the organization’s General Chair in 2014.

Prior to joining Dstillery in 2010, Claudia worked at IBM’s Watson Research Center, focusing on data analytics and machine learning. She holds a PhD in Information Systems from New York University (where she continues to teach at the Stern School of Business), and an MA in Computer Science from the University of Colorado.
Sessions - Sat

Paper Session 1: Beyond Accuracy

10:40 - 12:20
Kresge Auditorium
Chair: Joe Konstan

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations with a Purpose (PPF)</td>
<td>Dietmar Jannach, Gediminas Adomavicius</td>
</tr>
<tr>
<td>Recommender Systems for Self-Actualization (PPF)</td>
<td>Bart P. Knijnenburg, Saadhika Sivakumar, Daricia Wilkinson</td>
</tr>
<tr>
<td>A Coverage-Based Approach to Recommendation Diversity On Similarity Graph (LP)</td>
<td>Shameem A Puthiya Parambath, Nicolas Usunier, Yves Grandvalet</td>
</tr>
<tr>
<td>A Scalable Approach for Periodical Personalized Recommendations (SP)</td>
<td>Zhen Qin, Ish Rishabh, John Car­nahan</td>
</tr>
<tr>
<td>Multi-Word Generative Query Recommendation Using Topic Modeling (SP)</td>
<td>Matthew Mitsui, Chirag Shah</td>
</tr>
<tr>
<td>Contrasting Offline and Online Results when Evaluating Recommendation Algorithms (SP)</td>
<td>Marco Rossetti, Fabio Stella, Markus Zanker</td>
</tr>
<tr>
<td>Intent-Aware Diversification Using a Constrained PLSA (SP)</td>
<td>Jacek Wasilewski, Neil Hurley</td>
</tr>
</tbody>
</table>

SP: Short Paper, LP: Long Paper, PPF: Past, Present, Future Paper
Sat - Sessions

Industry Session 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Chair</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:40 - 12:20</td>
<td>Stratton Student Center (Sala 202)</td>
<td>Karen Church</td>
<td>Saúl Vargas (Mendeley)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mendeley: Recommendations for Researchers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Evan Estola (Meetup)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dhaval Shah, Rohit Parimi (Bloomberg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Max Sklar (Foursquare)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vidhya Murali (Spotify)</td>
</tr>
</tbody>
</table>

Paper Session 2: Algorithms I

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Chair</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00 - 15:30</td>
<td>Kresge Auditorium</td>
<td>Xavier Amatriain</td>
<td>Field-aware Factorization Machines for CTR Prediction (LP)</td>
<td>Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, Chih-Jen Lin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Learning Hierarchical Feature Influence for Recommendation by Recursive Regularization (LP)</td>
<td>Jie Yang, Zhu Sun, Alessandro Bozzon, Jie Zhang</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence (LP)</td>
<td>Dawen Liang, Jaan Altosaar, Laurent Charlin, David M. Blei</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local Item-Item Models For Top-N Recommendation (LP)</td>
<td>Evangelia Christakopoulou, George Karypis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asynchronous Distributed Matrix Factorization with Similar User and Item Based Regularization (SP)</td>
<td>Bikash Joshi, Franck Iutzeler, Massih-Reza Amini</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Query-based Music Recommendations via Preference Embedding (SP)</td>
<td>Chih-Ming Chen, Ming-Feng Tsai, Yu-Ching Lin, Yi-Hsuan Yang</td>
</tr>
</tbody>
</table>

SP: Short Paper, **LP**: Long Paper, **PPF**: Past, Present, Future Paper
Session 3: Cold Start and Hybrid Methods

16:20 - 18:00
Kresge Auditorium
Chair: Neil Hurley

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:20</td>
<td>Joint User Modeling across Aligned Heterogeneous Sites (LP)</td>
<td>Xuezhi Cao, Yong Yu</td>
</tr>
<tr>
<td></td>
<td>Fifty Shades of Ratings: How to Benefit from a Negative Feedback in Top-N Recommendations Tasks (LP)</td>
<td>Evgeny Frolov, Ivan Oseledets</td>
</tr>
<tr>
<td></td>
<td>Latent Factor Representations for Cold-Start Video Recommendation (LP)</td>
<td>Sujoy Roy, Sharat Chandra Gun-tuku</td>
</tr>
<tr>
<td></td>
<td>Ask the GRU: Multi-task Learning for Deep Text Recommendations (SP)</td>
<td>Trapit Bansal, David Belanger, Andrew McCallum</td>
</tr>
<tr>
<td></td>
<td>Addressing Cold Start for Next-song Recommendation (SP)</td>
<td>Szu-Yu Chou, Yi-Hsuan Yang, Jyh-Shing Roger Jang, Yu-Ching Lin</td>
</tr>
<tr>
<td></td>
<td>Accuracy and Diversity in Cross-domain Recommendations for Cold-start Users with Positive-only Feedback (SP)</td>
<td>Ignacio Fernández-Tobias, Paolo Tomeo, Iván Cantador, Tommaso Di Noia, Eugenio Di Sciascio</td>
</tr>
</tbody>
</table>

Session 4: User in the Loop

16:20 - 18:00
Kresge Auditorium
Chair: Ido Guy

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:20</td>
<td>HCI for Recommender Systems: the Past, the Present and the Future (PPF)</td>
<td>André Calero Valdez, Martina Ziefle, Katrien Verbert</td>
</tr>
<tr>
<td></td>
<td>Human-Recommender Systems: From Benchmark Data to Benchmark Cognitive Models (PPF)</td>
<td>Patrick Shafto, Olfa Nasraoui</td>
</tr>
<tr>
<td></td>
<td>Exploring the Value of Personality in Predicting Rating Behaviors: A Study of Category Preferences on MovieLens (SP)</td>
<td>Raghav Pavan Karumur, Tien T. Nguyen, Joseph A. Konstan</td>
</tr>
<tr>
<td></td>
<td>Pairwise Preferences Based Matrix Factorization and Nearest Neighbor Recommendation Techniques (SP)</td>
<td>Saikishore Kalloori, Francesco Ricci, Marko Tkalcic</td>
</tr>
<tr>
<td></td>
<td>Observing Group Decision Making Processes (SP)</td>
<td>Amra Delic, Julia Neidhardt, Thuy Ngoc Nguyen, Francesco Ricci, Laurens Rook, Hannes Werthner, Markus Zanker</td>
</tr>
<tr>
<td></td>
<td>ExpLOD: A Framework for Explaining Recommendations based on the Linked Open Data Cloud (SP)</td>
<td>Cataldo Musto, Fedelucio Narducci, Pasquale Lops, Marco De Gemmis, Giovanni Semeraro</td>
</tr>
<tr>
<td></td>
<td>The Value of Online Customer Reviews (SP)</td>
<td>Georgios Askalidis, Edward C. Mathouse</td>
</tr>
</tbody>
</table>
People Recommendation

Ido Guy
Yahoo Research, Israel

Luiz Pizzato
Commonwealth Bank of Australia, Australia

This tutorial gives an overview of how search engines and machine learning techniques can be tightly coupled to address the need for building scalable recommender or other prediction based systems. Typically, most of them architect retrieval and prediction in two phases. In Phase I, a search engine returns the top-k results based on constraints expressed as a query. In Phase II, the top-k results are re-ranked in another system according to an optimization function that uses a supervised trained model. However this approach presents several issues, such as the possibility of returning sub-optimal results due to the top-k limits during query, as well as the presence of some inefficiencies in the system due to the decoupling of retrieval and ranking.

To address this issue the authors created ML-Scoring, an open source framework that tightly integrates machine learning models into Elasticsearch, a popular search engine. ML-Scoring replaces the default information retrieval ranking function with a custom supervised model that is trained through Spark, Weka, or R that is loaded as a plugin in Elasticsearch. This tutorial will not only review basic methods in information retrieval and machine learning, but it will also walk through practical examples from loading a dataset into Elasticsearch to training a model in Spark, Weka, or R, to creating the ML-Scoring plugin for Elasticsearch. No prior experience is required in any system listed (Elasticsearch, Spark, Weka, R), though some programming experience is recommended.
Poster Reception

DEMOS

Powering Content Discovery through Scalable, Realtime Profiling of Users’ Content Preferences
Ido Tamir; Roy Bass; Guy Kobrinsky; Baruch Brutman; Ronny Lempel; Yoram Dayagi

Topical Semantic Recommendations for Auteur Films
Christian Rakow, Andreas Lommatzsch and Till Plumbaum

RecExp: A semantic recommender system with explanation based on heterogeneous information network
Jiawei Hu, Zhiqiang Zhang, Jian Liu, Chuan Shi, Philip Yu and Bai Wang

Federico Narducci, Pierpaolo Basile, Pasquale Lops, Marco De Gemmis and Giovanni Semeraro

Conversational Recommendation System with Unsupervised Learning
Yueming Sun, Yi Zhang, Yunfei Chen and Roger Jin

A Recommender System to tackle Enterprise Collaboration
Gabriel de Souza Pereira Moreira and Gilmar Alves de Souza

POSTERS

MoocRec.com : Massive Open Online Courses Recommender System
Panagiotis Symeonidis and Dimitrios Malakoudis

Recommendation from Intransitive Pairwise Comparisons
Arnoldo Frigessi, Valeria Vitelli, Marta Crispino and Elja Arjas

A Secure Shopping Experience based on Blockchain and Beacon Technology
Remo Manuel Frey, Denis Vuckovac and Alexander Ilic

Cross Domain Recommendation Using Vector Space Transfer Learning
Masahiro Kazama and Istvan Varga

Genre Prediction to Inform the Recommendation Process
Nevena Dragovic and Maria Soledad Pera

An Entity Graph Based Recommender System
Sneha Chaudhari, Amos Azaria and Tom Mitchell

Explicit Elimination of Similarity Blocking for Session-based Recommendation
Mattia Brusamento, Roberto Pagano, Martha Larson and Paolo Cremonesi

Modelling Session Activity with Neural Embedding
Oren Barkan, Yael Brumer and Noam Koenigstein
Detecting Trending Venues Using Foursquare’s Data
Stephanie Yang and Max Sklar

How to Survive Dynamic Pricing Competition in E-commerce
Rainer Schlosser, Martin Boissier, Andre Schober and Matthias Uflacker

Weighted Random Walks for Meta-Path Expansion in Heterogeneous Networks
Fatemeh Vahedian, Robin Burke and Bamshad Mobasher

rrecsys: an R-package for prototyping recommendation algorithms
Ludovik Çoba and Markus Zanker

Item2vec: Neural Item Embedding for Collaborative Filtering
Oren Barkan and Noam Koenigstein

Idomaar: A Framework for Multi-dimensional Benchmarking of Recommender Algorithms
Mario Scriminaci, Andreas Lommatzsch, Benjamin Kille, Frank Hopfgartner, Martha Larson, Davide Malagoli and Andras Sereny

Tip Ranker: A M.L. Approach to Ranking Short Reviews
Enrique Cruz and Berk Kapicioglu

Deep Auto-Encoding for Context-Aware Inference of Preferred Items’ Categories
Moshe Unger, Bracha Shapira, Lior Rokach and Ariel Bar

Music Playlist Recommendation via Preference Embedding
Chih-Ming Chen, Chun-Yao Yang, Chih-Chun Hsia, Yian Chen and Ming-Feng Tsai

Dish Discovery via Word Embeddings on Restaurant Reviews
Chih-Yu Chao, Yi-Fan Chu, Yi Ho, Chuan-Ju Wang and Ming-Feng Tsai

Combining Dynamic A/B Experimentation and Recommender Systems in MOOCs
Joseph Jay Williams and Luong Hoang

Towards Understanding Latent Factors and User Profiles by Enhancing Matrix Factorization with Tags
Tim Donkers, Benedikt Loepp and Jürgen Ziegler

Is Readability a Valuable Signal for Hashtag Recommendations?
Ion Madrazo and Maria Soledad Pera

Memory Priming and User Preferences
Evagelia Anagnostopoulou, Efthimios Bothos, Babis Magoutas and Gregoris Mentzas

Representing Items as Word-Embedding Vectors and Generating Recommendations by Measuring their Linear Independence
Ludovico Boratto, Salvatore Carta, Gianni Fenu and Roberto Saia

User Segmentation for Controlling Recommendation Diversity
Farzad Eskandanian, Bamshad Mobasher and Robin Burke
Personalization for Google Now — User understanding and application to information recommendation and exploration

At the heart of any personalization application, such as Google Now, is a deep model for users. The understanding of users ranges from raw history to lower dimensional reductions like interest, locations, preferences, etc. We will discuss different representations of such user understanding. Going from understanding to application, we will talk about two broad applications — recommendations of information and guided exploration — both in the context of Google Now. We will focus on such applications from an information retrieval perspective. Information recommendation then takes the form of biasing information retrieval, in response to a query or, in the limit, in a queryless application. Somewhere in between lies broad declaration of user intent, e.g., interest in food, and we will discuss how personalization and guided exploration play together to provide a valuable tool to the user. We will discuss valuable lessons learned along the way.

At the heart of any personalization application, such as Google Now, is a deep model for users.

ABOUT THE SPEAKER
Shashidhar (Shashi) Thakur is a Distinguished Engineer in the search team at Google. He led the team that brought the Google Knowledge Graph to search. He has previously worked on different aspects of search ranging from spam detection to core ranking. Most recently, Shashi leads the Google Now team, whose mission is to build a rich personalized understanding model of users and proactively bring high utility content to the user. Prior to Google, Shashi was a Distinguished Engineer at Synopsys Inc., working on algorithms behind tools that make digital chip design processes more efficient. He holds a PhD in Computer Science from University of Texas, Austin and a BTech in Computer Science from Indian Institute of Technology, Bombay.
Sun - Sessions

Session 5: Trust and Reliability

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Chair</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:40 - 10:40</td>
<td>Kresge Auditorium</td>
<td>Dietmar Jannach</td>
<td>Mechanism Design for Personalized Recommender Systems (LP)</td>
<td>Qingpeng Cai, Aris Filos-Ratsikas, Chang Liu, Pingzhong Tang</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mood-Sensitive Truth Discovery For Reliable Recommendation Systems in Social Sensing (LP)</td>
<td>Jermaine Marshall, Dong Wang</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crowd-Based Personalized Natural Language Explanations for Recommendations (LP)</td>
<td>Shuo Chang, F. Maxwell Harper, Loren Gilbert Terveen</td>
</tr>
</tbody>
</table>

Session 6: Applications

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Chair</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:40 - 10:40</td>
<td>Stratton Student Center Sala 202</td>
<td>Robin Burke</td>
<td>Domain-Aware Grade Prediction and Top-n Course Recommendation (LP)</td>
<td>Asmaa Elbadrawy, George Karypis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deep Neural Networks for YouTube Recommendations (LP)</td>
<td>Paul Covington, Jay Adams, Emre Sargin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optimizing Similar Item Recommendations in a Semi-structured Marketplace to Maximize Conversion (SP)</td>
<td>Yuri M Brovman, Marie Jacob, Natraj Srinivasan, Stephen Neola, Daniel Galron, Ryan Snyder, Paul Wang</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A Package Recommendation Framework for Trip Planning Activities (SP)</td>
<td>Idir Benouaret, Dominique Lenne</td>
</tr>
</tbody>
</table>

SP: Short Paper, **LP**: Long Paper, **PPF**: Past, Present, Future Paper
Sessions - Sun

Session 7: Past, Present, Future

<table>
<thead>
<tr>
<th>11:20 - 12:20</th>
<th>Kresge Auditorium</th>
<th>Chair: Jill Freyne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommender Systems with Personality (PPF)</td>
<td>Amos Azaria, Jason Hong</td>
<td></td>
</tr>
<tr>
<td>Past, Present, and Future of Recommender Systems: An Industry Perspective (PPF)</td>
<td>Xavier Amatriain, Justin Basilico</td>
<td></td>
</tr>
<tr>
<td>Algorithms Aside: Recommendation As The Lens Of Life (PPF)</td>
<td>Tamas Motajcsek, Jean-Yves Le Moine, Martha Larson, Daniel Kohlisdorf, Andreas Lommatzsch, Domonkos Tikk, Omar Alonso, Paolo Cremonesi, Andrew Demetriou, Kristaps Dobrajs, Franca Garzotto Ayse Göker Frank Hopfgartner, Davide Malagoli, Thuy Ngoc Nguyen, Jasminko Novak, Francesco Ricci, Mario Scriminaci, Marko Tkalcic, Anna Zacchi</td>
<td></td>
</tr>
<tr>
<td>Behaviorism is Not Enough (PPF)</td>
<td>Michael D Ekstrand, Martijn C Willemsen</td>
<td></td>
</tr>
</tbody>
</table>

Session 8: Deep Learning

<table>
<thead>
<tr>
<th>11:20 - 12:20</th>
<th>Stratton Student Center (Sala 202)</th>
<th>Chair: Paolo Cremonesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta-Prod2Vec - Product Embeddings Using Side-Information for Recommendation (LP)</td>
<td>Flavian Vasile, Elena Smirnova, Alexis Conneau</td>
<td></td>
</tr>
<tr>
<td>Convolutional Matrix Factorization for Document Context-Aware Recommendation (LP)</td>
<td>Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyong Lee, Hwanjo Yu</td>
<td></td>
</tr>
<tr>
<td>Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations (LP)</td>
<td>Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, Domonkos Tikk</td>
<td></td>
</tr>
</tbody>
</table>
Session 9: Contextual Challenges

14:00 - 15:40
Kresge Auditorium
Chair: Gedas Adomavicius

<table>
<thead>
<tr>
<th>Title</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Contextual Turn: from Context-Aware to Context-Driven Recommender Systems (PPF)</td>
<td>Roberto Pagano, Paolo Cremonesi, Martha Larson, Balázs Hidasi, Domonkos Tikk, Alexandros Karatzoglou, Massimo Quadrana</td>
</tr>
<tr>
<td>Discovering What You’re Known For: A Contextual Poisson Factorization Approach (LP)</td>
<td>Haokai Lu, James Caverlee, Wei Niu</td>
</tr>
<tr>
<td>TAPER: A Contextual Tensor-Based Approach for Personalized Expert Recommendation (LP)</td>
<td>Hancheng Ge, James Caverlee, Haokai Lu</td>
</tr>
<tr>
<td>Are You Influenced by Others When Rating? Improve Rating Prediction by Conformity Modeling (SP)</td>
<td>Yiming Liu, Xuezhi Cao, Yong Yu</td>
</tr>
<tr>
<td>Modelling Contextual Information in Session-Aware Recommender Systems with Neural Networks (SP)</td>
<td>Bartłomiej Twardowski</td>
</tr>
<tr>
<td>Getting the Timing Right: Leveraging Category Inter-purchase Times to Improve Recommender Systems (SP)</td>
<td>Denis Vuckovac, Julia Wamsler, Alexander Ilic, Martin Natter</td>
</tr>
<tr>
<td>MAPS: A Multi Aspect Personalized POI Recommender System (SP)</td>
<td>Ramesh Baral, Tao Li</td>
</tr>
</tbody>
</table>

Industry Session 2

14:00 - 15:40
Stratton Student Center (Sala 202)
Chair: Wei Chai

<table>
<thead>
<tr>
<th>Title</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommending for the World</td>
<td>Justin Basilico, Yves Raimond (Netflix)</td>
</tr>
<tr>
<td>The Exploit-Explore Dilemma in Music Recommendation</td>
<td>Oscar Celma (Pandora)</td>
</tr>
<tr>
<td>Feature Selection For Human Recommenders</td>
<td>Katherine Livins (Stitch Fix)</td>
</tr>
<tr>
<td>Considering Supplier Relations and Monetization in Designing Recommendation Systems</td>
<td>Jan Krasnodebski (Expedia)</td>
</tr>
</tbody>
</table>
Session 10: Social Perspective

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Chair</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:20 - 18:00</td>
<td>Kresge Auditorium</td>
<td>Elizabeth Daly</td>
<td>Recommending New Items to Ephemeral Groups Using Contextual User Influence (LP)</td>
<td>Elisa Quintarelli, Emanuele Rabosio, Letizia Tanca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Guided Walk: A Scalable Recommendation Algorithm for Complex Heterogeneous Social Networks (LP)</td>
<td>Roy Levin, Hassan Abassi, Uzi Cohen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STAR: Semiring Trust Inference for Trust-Aware Social Recommenders (LP)</td>
<td>Peixin Gao, Hui Miao, John S Baras, Jennifer Golbeck</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vista: A Visually, Socially, and Temporally-aware Model for Artistic Recommendation (LP)</td>
<td>Ruining He, Chen Fang, Zhaowen Wang, Julian McAuley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Representation Learning for Homophilic Preferences (LP)</td>
<td>Trong T. Nguyen, Hady W. Lauw</td>
</tr>
</tbody>
</table>

Lessons Learned from Building Real-Life Recommender Systems

Xavier Amatriain
Quora, USA

Deepak Agarwal
LinkedIn, USA

In 2006, Netflix announced a $1M prize competition to advance recommendation algorithms. The recommendation problem was simplified as the accuracy in predicting a user rating measured by the Root Mean Squared Error. While that formulation helped get the attention of the research community, it put the focus on the wrong approach and metric while leaving many important factors out.

In this tutorial we will talk we will describe the advances in Recommender Systems in the last 10 years from an industry perspective based on the instructors’ personal experience at companies like Quora, LinkedIn, Netflix, or Yahoo!. We will do so in the form of different lessons learned through the years. Some of those lessons will describe the different components of modern recommender systems such as: personalized ranking, similarity, explanations, context awareness, or multi-armed bandits. Others will also review the usage of novel algorithmic approaches such as Factorization Machines, Restricted Boltzmann Machines, SimRank, Deep Neural Networks, or List-wise learning to rank. Others will dive into details of the importance of gathering the right data or using the correct optimization metric.

But, most importantly, we will give many examples of prototypical industrial scale recommender systems with special focus on those unsolved challenges that should define the future of the recommender systems area.
Conference Banquet

Location: Boston Museum of Science
1 Science Park, Boston, MA 02114

Getting to the Boston Museum of Science:
Round-trip coaches will run continuously from 18:30 to 23:00 between the Museum of Science and the following two locations:

Hyatt Regency Cambridge at 575 Memorial Drive
Kresge Auditorium on Amherst Alley, off Memorial Drive.

You can use public transportation to get there (fares and schedules can be found at the MBTA website for the MBTA Green Line). If you drive, the museum offers complimentary parking during the hours of the event (your parking ticket will be validated inside the museum).
Matrix and Tensor Decomposition in Recommender Systems

Panagiotis Symeonidis
Aristotle University, Greece

The tutorial will offer a rich blend of theory and practice regarding dimensionality reduction methods, to address the information overload problem in recommender systems. This problem affects our everyday experience while searching for knowledge on a topic. Naive Collaborative Filtering cannot deal with challenging issues such as scalability, noise, and sparsity. We can deal with all the aforementioned challenges by applying matrix and tensor decomposition methods (also known as factorization methods). These methods have been proven to be the most accurate (i.e., Netflix prize) and efficient for handling big data. For each method (SVD, SVD++, timeSVD++, HOSVD, CUR, etc.) we will provide a detailed theoretical mathematical background and a step-by-step analysis, by using an integrated toy example, which runs throughout all parts of the tutorial, and helps the audience to understand clearly the differences among different factorization methods.

Each part of this tutorial provides the audience with an introduction to the most important aspects of Matrix and Tensor Factorization techniques in Recommender Systems and also contains many valuable references to relevant research papers. It also provides researchers and developers a comprehensive overview of the general concepts and techniques (e.g., models and algorithms) related with Matrix and Tensor Factorization recommendation and present them all new methods through real-life application scenarios and toy examples.
Group Recommender Systems

Ludovico Boratto
University of Cagliari, Italy

Group recommender systems are designed to provide suggestions in contexts in which people operate in groups. The goal of this tutorial is to provide the RecSys audience with an overview on group recommendation. We will first formally introduce the problem of producing recommendations to groups, then present a survey based on the tasks performed by these systems. We will also analyze challenging topics like their evaluation, and present emerging aspects and techniques in this area. The tutorial will end with a summary that highlights open issues and research challenges.
Sessions - Mon

<table>
<thead>
<tr>
<th>Industry Session 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 - 10:10</td>
</tr>
<tr>
<td>Leveraging a Graph-Powered, Real-Time Recommendation Engine to Create Rapid Business Value</td>
</tr>
<tr>
<td>Hypothesis testing: How to eliminate ideas as soon as possible</td>
</tr>
<tr>
<td>Recommending the world’s knowledge: application of recommender systems at Quora</td>
</tr>
<tr>
<td>Multicorpus Personalized Recommendations on Google Play: Apps/Games/Books/Movies/Music</td>
</tr>
<tr>
<td>Related Pins: Item-to-item Recommendations at Pinterest</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 11: Algorithms II</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:40 - 12:20</td>
</tr>
<tr>
<td>Personalized Recommendations using Knowledge Graphs: A Probabilistic Logic Programming Approach</td>
</tr>
<tr>
<td>Efficient Bayesian Methods for Graph-based Recommendation</td>
</tr>
<tr>
<td>Using Navigation to Improve Recommendations in Real-Time</td>
</tr>
<tr>
<td>Bayesian Low-Rank Determinantal Point Processes</td>
</tr>
<tr>
<td>Recommending Repeat Purchases using Product Segment Statistics</td>
</tr>
<tr>
<td>Bayesian Personalized Ranking with Multi-Channel User Feedback</td>
</tr>
</tbody>
</table>

Peer Effects, Social Multipliers and Cascades of Human Behavior

In this talk, I will survey empirical approaches to causal inference in networks and describe a series of largescale randomized experiments and causal observational studies of peer influence to explore the behavioral dynamics catalyzed by peer effects or social spillovers in human behavior and opinion formation. I will discuss the public policy implications of peer effects for bias in online ratings, social advertising, human health interdependence and the ability to generate cascades of behavior through peer to peer influence in networks.

ABOUT THE SPEAKER
Sinan Aral is the David Austin Professor of Management at MIT, where he holds joint Professorships in the Sloan School of Management, the Institute for Data, Systems and Society and where he co-leads MIT’s Initiative on the Digital Economy. He was the Chief Scientist at SocialAmp, one of the earliest social commerce analytics companies (until its sale to Merkle in 2012) and at Humin, a social platform that the Wall Street Journal called the first “Social Operating System” (until its sale to Tinder in 2016). Sinan was the Scholar-in-Residence at the New York Times R&D Lab in 2013, is a scientific advisor to Ditto Labs and Cloudtags, and has worked closely with Facebook, Yahoo, Microsoft, IBM, Intel, Cisco, Oracle, SAP and many other leading Fortune 500 firms on realizing business value from big data analytics, social media and IT investments. He is currently a general partner at Manifest Capital, a growth equity fund focused on technology driven investments.
Information

Presenters, Session Chairs & Participants

All accepted papers in this programs are denoted as a short paper (SP), a long paper (LP), or a Past, Present, and Future paper (PPF). Each accepted full/long paper has a time allocation of 20 minutes. Each short paper has a time allocation of 10 minutes. Each Past, Present, and Future paper has a time allocation of 15 minutes. This includes time for setup and for questions.

If you are chairing a session, please be sure to arrive at your room 20 minutes before the session begins.

If you are presenting in a session, please be sure to arrive at your room 20 minutes before the session begins and introduce yourself to the session chair. If you are using your own laptop for the presentation, then please arrive at least 20 minutes before the session begins. If you are using the provided laptop, please transfer your presentation to the laptop prior the start of the session.

The Student Volunteers will be around the rooms before and during the session to assist if there are any problems, or to communicate any concerns to the organising committee.

Wireless network

Conference attendees are welcome to access the Internet via a wireless networks provided by IBM and MIT. The network names are IBMInternet and MIT GUEST. Users must set up accounts on the IBM wireless network to gain access. We ask conference attendees to be considerate of other network users and limit heavy use of these networks during peak times to one device and avoid video streaming and downloading / uploading big files.

Catering

We provide morning and afternoon coffee throughout the event. Lunch will be provided during the main conference at Walker Memorial at MIT.
GENERAL CO-CHAIRS
Shilad Sen, Macalester College, USA
Werner Geyer, IBM Research Cambridge, USA

PROGRAM CO-CHAIRS
Jill Freyne, CSIRO, Australia
Pablo Castells, Universidad Autónoma de Madrid, Spain

WORKSHOP CO-CHAIRS
Elizabeth Daly, IBM Research Dublin, Ireland
Dietmar Jannach, TU Dortmund, Germany

TUTORIAL CO-CHAIRS
Li Chen, Hong Kong Baptist University, Hong Kong
Francesco Ricci, Free University of Bozen-Bolzano, Italy

DOCTORAL SYMPOSIUM CO-CHAIRS
Joe Konstan, University of Minnesota, USA
Martijn Willemsen, Eindhoven University of Technology, Netherlands

POSTER AND DEMO CO-CHAIRS
Ido Guy, Yahoo Research, Israel
Amit Sharma, Microsoft Research, USA

INDUSTRY CO-CHAIRS
Karen Church, Yahoo Labs, USA
Paul Lamere, Spotify, USA
Hrishi Aradhye, Google, USA

PROCEEDINGS CHAIR
Alejandro Bellogín, Universidad Autónoma de Madrid, Spain

PUBLICITY CO-CHAIRS
Alan Said, University of Skövde, Sweden
Michael Ekstrand, Texas State University, USA

UNIVERSITY LIAISON CHAIR
David Karger, MIT CSAIL, USA

STUDENT VOLUNTEER CO-CHAIRS
Amy Zhang, MIT CSAIL, USA
Bart Knijnenburg, Clemson University, USA

LOCAL ARRANGEMENTS CHAIR
Merry Morse, IBM Research Cambridge, USA

BIRTHDAY CHAIR
Casey Dugan, IBM Research Cambridge, USA

WEB CHAIR
Benedikt Loepp, University of Duisburg-Essen, Germany

SENIOR PROGRAM COMMITTEE
Gediminas Adomavicius, University of Minnesota
Xavier Amatriain, Quora
Alejandro Bellogín, Universidad Autónoma de Madrid
Shlomo Berkovsky, CSIRO
Peter Brusilovsky, University of Pittsburgh
Robin Burke, DePaul University
Iván Cantador, Universidad Autónoma de Madrid
Li Chen, Hong Kong Baptist University
Paolo Cremonesi, Politecnico di Milano
Marco De Gemmis, University of Bari
Martin Ester, Simon Fraser University
Boi Faltings, EPFL
Alexander Felfernig, Graz University of Technology
Ido Guy, Yahoo! Israel
Rong Hu, Castleton Commodities International
Neil Hurley, University College Dublin
Dietmar Jannach, TU Dortmund
Alexandros Karatzoglou, Telefonica Research
George Karypis, University of Minnesota
Joseph Konstan, University of Minnesota
Yehuda Koren, Google
Pasquale Lops, University of Bari
Bamshad Mobasher, DePaul University
Wolfgang Nejdl, L3S and University of Hannover
Pearl Pu, EPFL
Francesco Ricci, Free University of Bozen-Bolzano
Lior Rokach, Ben-Gurion University
Rodrygo Santos, Universidade Federal de Minas Gerais
Lars Schmidt-Thieme, University of Hildesheim
Giovanni Semeraro, University of Bari
Bracha Shapira, Ben-Gurion University
Harald Steck, Netflix
Domonkos Tikk, Gravity R&D
Alexander Tuzhilin, Stern School of Business, New York University
Yong Yu, Shanghai Jiao Tong University
Markus Zanker, Alpen-Adria-Universität Klagenfurt
Organization

PROGRAM COMMITTEE
A Panagiotis Adamopoulos, New York University
Luca Maria Aiello, Yahoo Labs
Jussara Almeida, Universidade Federal de Minas Gerais
Linas Baltrunas, Netflix
Maria Bielikova, Slovak University of Technology in Bratislava
Roi Blanco, University of A Coruña
Derek Bridge, University College Cork
Peter Briggs, HeyStacks
Sylvain Castagnos, LORIA
Shuo Chang, University of Minnesota
Enhong Chen, University of Science & Technology of China
Maurice Coyle, HeyStaks
Elizabeth M. Daly, IBM Research
Matthew Davis, IBM Research
Toon De Pessemier, Ghent University
Arjen de Vries, Radboud University
Christian Desrosiers, Ecole de Technologie Superieure
Tommaso Di Noia, Politecnico di Bari
Ernesto Diaz-Aviles, IBM Research
Hendrik Drachsler, Open University of the Netherlands
Casey Dugan, IBM T.J. Watson Research
Michael Ekstrand, Texas State University
Florent Garcin, EPFL
Franca Garzotto, Politecnico di Milano
Yong Ge, The University of North Carolina at Charlotte
Marcos Goncalves, Universidade Federal de Minas Gerais
Derek Greene, University College Dublin
Asela Gunawardana, Microsoft Research
Guibing Guo, Northeastern University
Jiawei Han, University of Illinois at Urbana-Champaign
Max Harper, University of Minnesota
Frank Hopfgartner, University of Glasgow
Andreas Hotho, University of Wuerzburg
Maya Hristakieva, Mendeley
Kris Jack, Mendeley
Alejandro Jaimes, AiCure
Mohsen Jamali, LinkedIn
Robert Jäschke, L3S Research Center
Daniel Kluver, University of Minnesota
Bart Knijnenburg, Clemson University
Martha Larson, Delft University of Technology
Neal Lathia, University of Cambridge
Sangkeun Lee, Oak Ridge National Laboratory
Sang-Goo Lee, Seoul National University
Jure Leskovec, Stanford University
Tao Li, Florida International University
Huan Liu, Arizona State University
Qi Liu, University of Science and Technology of China
Bernd Ludwig, Universitat Regensburg
Yannis Manolopoulos, Aristotle University of Thessaloniki
Leandro Balby Marinho, Federal University of Campina Grande
Judith Masthoff, University of Aberdeen
Wagner Meira Jr., Universidade Federal de Minas Gerais
Cataldo Musto, University of Bari
Fedelucio Narducci, University of Bari Aldo Moro
Yiu-Kai Ng, Brigham Young University
Tien T. Nguyen, University of Minnesota
John O’Donovan, University of California Santa Barbara
Nuria Oliver, Telefonica R&D
Balaji Padmanabhan, University of South Florida
Javier Parapar, University of A Coruña
Denis Parra, Pontificia Universidad Catolica de Chile
Maria Soledad Pera, Boise State University
Luiz Pizzato, 1-Page
Till Plumbaum, Technische Universitat Berlin
Josep M. Pujol, Cliqz
Daniele Quercia, Nokia Bell Labs
Steffen Rendle, Google
Inbal Ronen, IBM Haifa Reserach Lab
Alan Said, University of Skövde
Olga C. Santos, aDeNu Research Group (UNED)
Badrul Sarwar, LinkedIn
Markus Schedl, Johannes Kepler University (JKU) Linz
Fabrizio Silvestri, Yahoo Labs
Barry Smyth, University College Dublin
Neel Sundaresan, eBay
Panagiotis Symeonidis, Aristotle University of Thessaloniki
Organization

Nava Tintarev, University of Aberdeen
Christoph Trattner, Graz University of Technology
Saúl Vargas, Mendeley
Vasileios Vasileiadis, IBM Research - Zurich
Jun Wang, University College London
Jian Wang, LinkedIn
Martijn Willemsen, Eindhoven University of Technology
David Wilson, University of North Carolina at Charlotte
Hui Xiong, Rutgers University
Quan Yuan, Alibaba Group
Tingshao Zhu, Chinese Academy of Sciences
Nivio Ziviani, Universidade Federal de Minas Gerais
Rodrygo Santos, Universidade Federal de Minas Gerais

POSTER PROGRAM COMMITTEE
Yue Shi, Yahoo Labs
Denis Parra, Pontificia Universidad Catolica de Chile
Bart Knijnenburg, Clemson University
Simon Dooms, Trackuity
Javier Parapar, IRLab, Computer Science Dept., University of A Coruña
Fidel Cacheda, Universidad de A Coruña
Vito Claudio, Ostuni Politecnico di Bari
Luiz Pizzato, 1-Page
Iván Cantador, Universidad Autónoma de Madrid
Alejandro Bellogin, Universidad Autonoma de Madrid
Saúl Vargas, University of Glasgow
Cataldo Musto, Dipartimento di Informatica - University of Bari
Rishabh Mehrotra, University College London
Shuo Chang, University of Minnesota
Oren Sar Shalom, Bar Ilan University
Alan Said, University of Skövde
Michael Ekstrand, Boise State University
Shaghayegh Sahebi, University of Pittsburgh
Noam Koenigstein, Microsoft
Brent Hecht, University of Minnesota
Michael O’Mahony, University College Dublin
Julian Mcauley, UC San Diego
Casey Dugan, IBM T.J. Watson Research
Amy Zhang, Cambridge University

DEMO PROGRAM COMMITTEE
Saúl Vargas, University of Glasgow
Shlomo Berkovsky, CSIRO
Bart Knijnenburg, Clemson University
Marko Tkalcic, Free University of Bozen-Bolzano Faculty of Computer Science
Francesco Ricci, Free University of Bozen-Bolzano
Fidel Cacheda, Universidad de A Coruña
Cataldo Musto, Dipartimento di Informatica - University of Bari
Elizabeth M. Daly, IBM Research
Zeno Gantner, Nokia gate5 GmbH
Simon Dooms, Trackuity
DIAMOND SUPPORTERS

Google
Spotify
Alibaba Group

PLATINUM SUPPORTERS

NETFLIX
Quora
PANDORA
OpenTable

GOLD SUPPORTERS

TARGET
criteol labs
Microsoft
amazon
zalando
Medium

SILVER SUPPORTERS

demandware
SILVER EGG TECHNOLOGY
Yandex

SPECIAL SUPPORTERS

IBM Research
SIGCHI
MIT EECS
NSF
XING