Session 7: Cold Start
Date: Wednesday October 16, 09:30 AM – 10:25 AM (GMT+2)
Room: Petruzzelli Theater
Session Chair: Linas Baltrunas
- RES 🕓5Scene-wise Adaptive Network for Dynamic Cold-start Scenes Optimization in CTR Prediction
by Wenhao Li (Huazhong University of Science and Technology; Meituan), Jie Zhou (Beihang University), Chuan Luo (Beihang University), Chao Tang (Meituan), Kun Zhang (Meituan) and Shixiong Zhao (The University of Hong Kong) - RES 🕓5A multimodal single-branch embedding network for recommendation in cold-start and missing modality scenarios
by Christian Ganhör (Johannes Kepler University Linz), Marta Moscati (Johannes Kepler University Linz), Anna Hausberger (Johannes Kepler University Linz), Shah Nawaz (Johannes Kepler University Linz) and Markus Schedl (Johannes Kepler University Linz; Linz Institute of Technology) - RES 🕓15A Multi-modal Modeling Framework for Cold-start Short-video Recommendation
by Gaode Chen (Kuaishou Technology), Ruina Sun (Kuaishou Technology), Yuezihan Jiang (Kuaishou Technology), Jiangxia Cao (Kuaishou Technology), Qi Zhang (Kuaishou Technology), Jingjian Lin (Kuaishou Technology), Han Li (Kuaishou Technology), Kun Gai (Kuaishou Technology) and Xinghua Zhang (Chinese Academy of Sciences) - RES 🕓15MARec: Metadata Alignment for cold-start Recommendation
by Julien Monteil (Amazon), Volodymyr Vaskovych (Amazon), Wentao Lu (Amazon), Anirban Majumder (Amazon) and Anton van den Hengel (University of Adelaide) - RES 🕓15Prompt Tuning for Item Cold-start Recommendation
by Yuezihan Jiang (Kuaishou Technology), Gaode Chen (Kuaishou Technology), Wenhan Zhang (Peking University), Jingchi Wang (Peking University), Yinjie Jiang (Kuaishou Technology), Qi Zhang (Kuaishou Technology), Jingjian Lin (Kuaishou Technology), Peng Jiang (Kuaishou Technology) and Kaigui Bian (Peking University)